2018 REGULAR INSPECTION REPORT

DOUGHTY POND DAM
NJDEP FILE NO. 36-001

CITY OF ABSECON, ATLANTIC COUNTY, NEW JERSEY

JUNE 2018

Prepared by:

Cherry, Weber & Associates, PC
MEMBER OF THE VAN CLEEF ENGINEERING GROUP

20 Gibson Place, Suite 100
Freehold, New Jersey 07728
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>Location Map</td>
<td>3</td>
</tr>
<tr>
<td>Piezometer Location Plan</td>
<td>4</td>
</tr>
<tr>
<td>Dam Inspection Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Project Dam History</td>
<td>5</td>
</tr>
<tr>
<td>Closing & Limitations</td>
<td>6</td>
</tr>
<tr>
<td>Visual Inspection Checklist</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>New Jersey Dam Safety Compliance Schedule Form</td>
<td>16</td>
</tr>
<tr>
<td>Photographs</td>
<td>17</td>
</tr>
<tr>
<td>Appendix A – Instrumentation Data</td>
<td>29</td>
</tr>
</tbody>
</table>
DAM INSPECTION INTRODUCTION

Pursuant to Atlantic City Municipal Utilities Authority (ACMUA) Resolution No. 66, dated May 7, 2018, Cherry, Weber & Associates, P.C. (CWA) performed a Regular Inspection of Doughty Pond Dam located in the City of Absecon, Atlantic County, New Jersey. A plan presenting the regional location of the dam is presented on Drawing No. 1. The purpose for our current services was to perform a Regular Inspection of the dam in accordance with the NJ Dam Safety Standards [N.J.A.C. 7:20]. Our work included the visual inspection of the dam, completion of the Dam Safety Visual Inspection Checklist and the preparation of this report. In addition, CWA is currently updating the Operations Manual (O&M) and Emergency Action Plan (EAP). All references to the left and right within this report assume one is looking downstream.

PROJECT DAM HISTORY

Doughty Pond Dam is a Class II, Significant Hazard Dam and is designated as NJ File No. 36-001 and is owned and operated by the ACMUA. The dam was constructed across Absecon Creek, is approximately 2,850 feet in length and consists of an earthen embankment with a concrete core. The crest is 8 feet wide. The earthen embankment is graded at 2 horizontal to 1 vertical along the upstream slope and 1.5 H to 1V along the downstream slope. The upstream side of the dam is lined with approximately 12 inch diameter riprap and the downstream side of the dam is covered with approximately 3 inch diameter stone. The spillway is a reinforced concrete overflow weir which is 12 feet in height and 110 feet in length. The spillway empties onto a concrete apron and then through a reinforced concrete channel. A vinyl sheet pile wall runs across the upstream side of the spillway area.

Low level outlets are located on both the left and right sides of the spillway. These low level outlets consist of two, 30 inch diameter ductile iron pipes which discharge to the spillway apron. The low level outlets are controlled by sluice gates with crank operator floor stands. An intake structure for the pipeline leading to the ACMUA potable water system is located approximately 300 feet south of the spillway structure within Doughty Pond.

A previous Regular Inspection was performed by French & Parrello Associates of Wall, New Jersey, in July 2016. During this inspection, the dam was determined to be in a satisfactory condition. The following short term repairs and long term improvements were recommended:

Short Term Repairs

- Continue ongoing maintenance including:
 - Removal of undesirable vegetation from the upstream slope, downstream slope and crest of the dam.
 - Removal of debris from the fence downstream of the spillway.
 - Monitor the depressed area noted on the downstream slope, near the left abutment.
• Monitor cracks in spillway cracks in spillway wing walls for deterioration or movement
• Repair cracks and spalls in concrete walkway, and spillway wing walls.
• Remove vegetation in the vicinity of the Vibrating Wire Piezometer locations.
• Replace Vibrating Wire Piezometer cap at P4W location.

Long Term Improvements/Studies

• The vibrating wire piezometers should continue to be read at the time of the Regular and Formal Dam Inspections.
• Calibrate the Geokon-404 readout prior to the next Regular or Formal Dam Inspection.

CLOSING & LIMITATIONS

Our work was limited to a visual dam inspection and did not include any stability or hydraulic analyses or any design services. In addition, no assessment is being made of the structural condition of the bridges or culverts associated with the dam. Services performed by CWA during the referenced inspection have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended in the services provided.
VISUAL INSPECTION CHECKLIST

NJ INSPECTION YEAR: 2018

TYPE OF INSPECTION: (formal, regular, informal): Regular

DAM NAME: Doughty Pond Dam
DAM FILE NO.: 36-001
LOCATION: City of Absecon, Atlantic County
OWNER: Atlantic City Municipal Utilities Authority (ACMUA)
OPERATOR: ACMUA
DATE OF INSPECTION: June 27, 2018
August 2, 2018 obtained piezometer data

RESERVOIR INFORMATION

 Normal Reservoir Elevation (ft): ± 12
 Reservoir Elevation at time of inspection (ft): ± 12.1 (estimated)

WEATHER CONDITIONS (including recent rainfall): 75 °F Partly Sunny, No recent rainfall.

INSPECTION PERSONNEL

New Jersey Licensed Professional Engineer(s):

Name Affiliation Area of Expertise
William F. Mercurio, P.E. Cherry, Weber & Associates Geotechnical/Dam
Tariq Bashir, P.E. Gentech Engineering Associates Dam

Non-Licensed technical expert(s) and advisor(s):

Name Affiliation Area of Expertise
Joseph Letinski Cherry, Weber & Associates Geotechnical

State Representative(s):

Name Affiliation
None

Dam Owner Representative(s):

Name Affiliation
Claude Smith ACMUA

Others:

Name Affiliation
None
GENERAL INFORMATION
Name of Dam: Doughty Pond Dam
Fed. I.D. No. NJ-00080
River Basin: Absecon Creek
Town: City of Absecon
Block: 101
Nearest Downstream City-Town: City of Absecon/City of Pleasantville
Stream Name: Absecon Creek
Latitude (N): 39° 25' 49"
Longitude (W): 74° 31' 23"
Type of Dam: Earthfill
N.J. Dam No.: 36-001
County: Atlantic
Lot: 913
Tributary of: Absecon Bay
Purpose of Dam: Public Water Supply
Height (ft): ± 18
Normal Surface (ac): ± 225
Maximum Capacity (af): ± 2,400
Drainage Area (sqr mls): 16.7
Length (ft): ± 2,850
Normal Capacity (af): ± 750
Spillway Capacity (cfs): ± 850 (SDS per NJDEP 10/89 letter)

HISTORY
Date Constructed: 1914
Designer:
Original – Unknown
1992 – Stone & Weber Engineers
1998 – Elam Associates, PA

Constructed By:
1992 – Charles Maradino Concrete, LLC
1998 – Weco Construction

Owner & Address: Atlantic City Municipal Utilities Authority
401 North Virginia Avenue, Atlantic City, NJ 08401-0117

Owner/Operator present during inspection (yes or no): Yes.

PREVIOUS INSPECTIONS (date of)
Last Inspection: July 26, 2016
Phase I Inspection: March 17, 1978
Last Regular Inspection: July 26, 2016
Last Formal Inspection: October 12, 2010

EMERGENCY ACTION PLAN (Required for all Class I and Class II dams):
Date of Approved Plan: February 15, 2000 (per NJDEP records).
Date of Plan Revision: CWA to revise in 2018.
Is the notification flowchart complete and current? Yes.
Is inundation mapping or a description included? Yes.
Are emergency materials and equipment identified? Yes.
When was the plan last tested?
Not tested specifically for the dam. However, general responses are periodically activated resulting from other system emergencies.

DOWNSTREAM HAZARD CLASSIFICATIONS
Present Hazard Classification:
Significant, Class II.
Changes in Downstream Land Use and Habitation:
None observed.
Is present classification appropriate?
Yes.

OPERATION AND MAINTENANCE
Date of Operation and Maintenance Plan:
December 15, 2011.
CWA to revise in 2018.
Are instructions adequate?
Yes.
Do operating personnel follow instructions?
Yes.
What are operating personnel capabilities?
The owner has sufficient resources for routine operation and maintenance.

EXAMINATION OF EMBANKMENT DAMS AND DIKES

DESCRIPTION OF STRUCTURE
Embankment Material:
Earth embankment.
Cutoff Type:
Clay core wall. Steel sheeting with concrete cap at spillway.
Impervious Core:
Clay core wall.
Internal Drainage System:
Two six inch diameter perorated pipe toe drains exit and discharge through downstream training walls on either side of the primary spillway apron.

Movement (Horizontal and Vertical Alignment):
None observed.
Junctions with Abutments or Embankments:
No problems noted.
Miscellaneous:
N/A

CREST
Vertical Alignment:
No problems noted. The crest of the dam is defined by a concrete sidewalk which is at elevation 16.74.
Horizontal Alignment:
Generally straight. No indications of movement observed.
Surface Cracks:
Some minor cracking of the concrete sidewalk observed.
Settlement:
No problems noted.
Unusual Conditions:
None observed.

UPSTREAM SLOPE
Slope (Estimate) (H:V):
Approximately 2H:1V. The upstream slope of the earthen embankment is covered with riprap slope protection.
Trees, Undesirable Growth or Debris, Animal Burrows:
Some localized, minor vegetation observed.
Sloughing, Subsidence or Depressions:
None observed.
Slope Protection:

Surface Cracks or Movement at Toe:

Unusual Conditions:

DOWNSTREAM SLOPE

Slope (Estimate) (H:V):

Trees, Undesirable Growth or Debris, Animal Burrows:

Sloughing, Subsidence or Depressions:

Surface Cracks or Movement at Toe:

Seepage:

External Drainage System (Ditches, Trenches, Blanket):

Condition Around Outlet Structure:

Unusual Conditions:

ABUTMENTS AND TOE AREA

Erosion at Contract:

Seepage or Wet Area Along Contract:

Signs of Movement:

Depressions, Sinkholes:

Unusual Conditions:

SEEPAGE AND TOE DRAIN / RELIEF WELL FLOW SUMMATION

None observed.

<table>
<thead>
<tr>
<th>Location</th>
<th>Estimated Flow</th>
<th>Color (Turbidity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None observed</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

EXAMINATION OF CONCRETE AND MASONRY DAMS (NOT APPLICABLE)

EXAMINATION OF SPILLWAYS AND OUTLET WORKS

TYPE(S) AND DESCRIPTION OF SPILLWAY(S)

Primary: 100 foot long concrete ogee spillway structure. Crest EL. ±12.0.

Secondary (auxiliary): None.

Emergency: None

Other: N/A
FOR EACH SPILLWAY THE FOLLOWING ASPECTS MUST BE EXAMINED WHERE APPROPRIATE

ENTRANCE CHANNEL
Description: Not Applicable – flow enters directly from Doughty Pond.

SPILLWAY CREST
Description: Uncontrolled ogee crest. Previous reports indicate the spillway has been resurfaced with shotcrete or gunite.
Condition of Material: No problems noted. Some minor cracking observed, overall condition is fair.
Signs of Movement: None observed.
Joints: No significant deterioration observed.
Unusual Conditions: None observed.

DROP BOX
Not Applicable (no drop box).

SPILLWAY WING WALLS
Description: Concrete training walls.
Condition of Material: Fair - minor cracks with efflorescence observed on both east and west wing walls. Right wing wall contained a vertical crack the full height of the wall. No signs of movement were observed.
Signs of Movement: None observed.
Joints: No significant deterioration observed. Some delamination of the concrete at the interface of the training walls and ogee spillway was observed.
Drains: None observed.
Unusual Conditions: None observed.

DOWNSTREAM APRON
Description: Downstream apron submerged and not observed at the time of the inspection.

CULVERTS
Description: Not Applicable (no culverts).

TRASH RACKS
Description: Not Applicable (no trach racks).

CHUTES
Description: Not Applicable (no chutes).

STILLING BASIN
Description: Concrete stilling basin. A masonry and concrete composite divider wall is located in the middle and a concrete end sill is located at the downstream end of the stilling basin. The left portion of the end sill wall has a deflector wall to direct low-flows back to center channel.
Condition of Material: The stilling basin and end sill were partially submerged at the time of the inspection. The exposed walls at the downstream end of the spillway were spalled and cracked in several locations. Portion of divider noted in 2016 inspection has been removed.
Signs of Movement: None observed.

Erosion: None observed. The area downstream of the stilling basin was completely submerged by tailwater.

Unusual Conditions: An artesian well drains into the stilling basin.

EXIT CHANNEL

Vegetation (Trees, Bushes): None observed.

Debris: Some minor debris was observed at the bottom of the chain link fence traversing the exit channel.

Channel Side-Slope Stability: Concrete side walls exhibit cracking, spalling and loss of concrete/gunite coating. Portions of the coating have delaminated and or cracked. The deterioration does not appear to significantly impact the function of the dam.

Erosion: None observed.

Unusual Conditions: None observed.

LOW LEVEL OUTLET

Description: Two 30 inch diameter pipes constructed through concrete spillway.

Condition: Not observed; submerged at the time of inspection.

Trash Rack: Not observed; submerged at the time of inspection.

Leakage: Not observed; submerged at the time of inspection.

Location N/A

Unusual Conditions: None observed.

Was the low level outlet operated during the inspection? No.

Were there difficulties operating the low level outlet? N/A

When was the low level outlet last operated and did this conform with the Operation and Maintenance procedures? The Low Level Outlet is periodically exercised by the ACMUA staff, based on potable water requirements.

Miscellaneous: Unknown.

STILLING BASIN FOR LOW LEVEL OUTLET

Description: Same as Primary Spillway exit channel; see description and observations above.

EXIT CHANNEL FOR LOW LEVEL OUTLET

Description (Trees, Bushes): Same as Primary Spillway exit channel; see description and observations above.

EXAMINATION OF OTHER FEATURES

INSTRUMENTATION (Monumentation/Surveys, Observation Wells, Weirs, Piezometers, Etc.) location, condition:

<table>
<thead>
<tr>
<th>Item</th>
<th>Location</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two vibrating wire piezometers recommended in 2005 have been installed. See Drawing No. 2 for the location of the piezometers.</td>
<td>Downstream of embankment/spillway</td>
<td>Good condition</td>
</tr>
</tbody>
</table>

See Appendix A for a summary of readings taken during the inspection.
RESERVOIR

Slopes:
Appeared stable.

Sedimentation:
No problems noted.

Unusual Conditions Which Affect Dam:
None observed.

Unusual Conditions:
None observed.

APPURtenANT STRUCTURES (Power House, Gatehouse, Penstocks, Water Supply, Other)

Description and Condition of each:
A water supply main is constructed from a submerged intake located west of spillway. The electric actuator for the intake control valve is located on a platform extended into the impoundment and is accessible from the embankment by footbridge. Operator appears to be in good condition and is reported by ACMUA personnel to be operating as intended. The existing concrete footbridge exhibits a significant crack.

MECHANICAL EQUIPMENT

Item
None.

Frequency of Operation
CONCLUSION

DAM INSPECTION PROGRAM GUIDELINES

The following new guidelines have been established by the NJDEP Bureau of Dam Safety & Flood Control to help meet the requirements of the National Inventory of Dams condition assessment of existing dam structures. Please follow the guidelines/definitions below and select the appropriate checkbox.

SATISFACTORY
No existing or potential dam safety deficiencies are recognized. Acceptable performance is expected under all applicable loading conditions (static, hydrologic, seismic) in accordance with the applicable regulatory criteria. Minor maintenance items may be required.

FAIR
Acceptable performance is expected under all required loading conditions (static, hydrologic, seismic) in accordance with the applicable dam safety regulatory criteria. Minor deficiencies may exist that require remedial action and/or secondary studies or investigations.

POOR
A dam safety deficiency is recognized for any required loading condition (static, hydrologic, seismic) in accordance with the applicable dam safety regulatory criteria. Remedial action is necessary. POOR also applies when further critical studies or investigations are needed to identify any potential dam safety deficiencies.

UNSATISFACTORY
Considered unsafe. A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution. Reservoir restrictions may be necessary.

I certify that the dam structure referenced herein was personally inspected by me and was found to be in the following condition (select one only):

☐ SATISFACTORY
☐ FAIR
☐ POOR
☐ UNSATISFACTORY
CONCLUSION (continued)

I recommend the following repairs be made immediately:

1. Continue ongoing maintenance including:
 - Removal of undesirable vegetation from the upstream slope, downstream slope and crest of the dam.
 - Removal of debris from the fence downstream of the spillway.
 - Monitor the depressed area noted on the downstream slope, near the left abutment.
 - Monitor cracks in spillway cracks in spillway wing walls for deterioration or movement.

2. Repair cracks and spalls in concrete walkway, and spillway wing walls.

3. Remove vegetation in the vicinity of the Vibrating Wire Piezometer locations.

4. Replace Vibrating Weir Piezometer cap at P4W location.

The following long term improvements should also be undertaken:

1. The vibrating wire piezometers should continue to be read at the time of Regular and Formal Dam.

2. Calibrate Geokon GK-404 readout prior to the next Regular or Formal Dam Inspection.

The following studies are recommended:

- [] Hydrologic and Hydraulic analysis
- [] Stability analysis
- [] Failure/inundation analysis
- [] Other
- [x] None

Have the recommendations above included those from the Phase I Inspection Report or previous Regular or Formal Inspection Reports? If not, indicate why.

Yes

EMERGENCY ACTION PLAN (This section must be completed for all Class I & II dams)

Date of Approved Plan: February 15, 2000 (per NJDEP records).

Date of Last Plan Revision: CW to revise in 2018.

Is the notification flowchart complete and current? The EAP Flow Chart is being updated in 2018.

Is inundation mapping or a description included? If not, why? Yes.

NJ Dam Safety Compliance Schedule Form (attached). This form must be completed or the Inspection Report will be deemed incomplete.

Yes.

Name of Professional Engineering Company/Consultant Representing the Owner:

Cherry, Weber & Associates

20 Gibson Place, Suite 100
Freeland, NJ 07728

(732) 303-8700

New Jersey Licensed Professional Engineer representing the dam owner in responsible charge of the inspection:

Sign: William F. Mercurio, P.E. Date

New Jersey Professional Engineer License Number: 29247 SEAL

Doughty Pond Dam
New Jersey Dam Safety Compliance Schedule Form

<table>
<thead>
<tr>
<th>Dam Name:</th>
<th>Owner: Atlantic City Municipal Utilities Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doughty Pond Dam</td>
<td>Address: 401 North Virginia Avenue, Atlantic City, NJ 08401</td>
</tr>
<tr>
<td></td>
<td>Claude Smith</td>
</tr>
<tr>
<td>File No:</td>
<td>Phone: (609) 345-3315</td>
</tr>
<tr>
<td>36-001</td>
<td>Email: csmith@acmua.org</td>
</tr>
<tr>
<td></td>
<td>Owners Engineering Firm: Cherry, Weber & Associates</td>
</tr>
<tr>
<td></td>
<td>Name:</td>
</tr>
<tr>
<td></td>
<td>Address: 20 Gibson Place, Suite 100</td>
</tr>
<tr>
<td></td>
<td>Freehold, NJ 07728</td>
</tr>
<tr>
<td></td>
<td>Phone: (732) 303-8700</td>
</tr>
<tr>
<td></td>
<td>Email: bmercuro@cherryweber.com</td>
</tr>
</tbody>
</table>

The purpose of this form is to allow the dam owner, through consultation with their engineer, to establish a time line for addressing the deficiencies identified in the inspection report for the dam and bringing the dam into compliance with the New Jersey Dam Safety Standards, N.J.A.C. 7:20-1.1 et seq.

| Proposed time frame for submission of required information and implementation of recommended repairs: |
| (Engineer should check required sections and propose appropriate time frames. However, the Dam Safety Section reserves the right to require additional dates and/or information as needed.) |

- **☑ Performance of maintenance and repairs not requiring approval from the Dam Safety Section**: Such work includes grass mowing, brush removal, debris removal, filling of animal burrows, minor concrete repairs, minor gate repairs, filling of areas of minor surface erosion, etc. The Dam Safety Section must be notified upon completion of these activities.

 - **Work to be completed no later than**: Routine maintenance to be performed regularly; repairs to be performed based on priority of work.

- **☐ Engineering Report / Studies**: This work includes any required hydrologic and hydraulic analysis, structural analysis, alternative analysis, geotechnical investigations or dam breach analysis that may be recommended by your engineer and/or required by the Dam Safety Section.

 - **Studies to be submitted for review no later than**: N/A

- **☐ Permit Application**: A permit application must be submitted for any construction activity at the dam. The permit application must address all deficiencies as identified in the inspection report and the subsequent engineering report / studies.

 - **Permit application to be submitted no later than**: as available funding allows months after the date of the Dam Safety Section’s approval of any required studies. (Please provide date if no studies are required.)

- **☐ Construction to start no later than**: N/A months after the date of issuance of the permit by the Dam Safety Section.

- **☑ Operation and Maintenance Plan (O&M)**: An O&M is required for all dams. O&M’s should be submitted with the permit application or sooner if possible. Existing O&M’s may need to be updated if a dam is being rehabilitated. Please indicate date a new or revised O&M will be submitted if there is not an existing and approved Manual on file with this office.

 - **O&M to be submitted no later than**: 8/31/2018

- **☑ Emergency Action Plan (EAP)**: EAPs are required for all high and significant hazard dams and should be submitted as soon as possible. Existing EAPs should be reviewed on a yearly basis and revised as necessary. Please indicate date a new or updated EAP will be submitted if there is not an existing and approved Plan on file with this office.

 - **EAP to be submitted no later than**: 8/31/2018

The dates provided above will be reviewed by the Dam Safety Section to determine if the schedule is acceptable to achieve compliance with the Dam Safety Standards. Requests for extensions to the accepted time frames outlined above must be submitted to this office in writing along with appropriate justification and will be considered on its merits on a case by case basis.

<table>
<thead>
<tr>
<th>Signed: Dam Owner</th>
<th>Date</th>
<th>Signed: Owner’s Engineer</th>
<th>Date</th>
</tr>
</thead>
</table>

Additional information including Dam Safety Section forms, standards and inspection guidelines as well as EAP guidelines and a sample O&M is available at http://www.state.nj.us/dep/damsafety or contact this office via e-mail at Damsafety@dep.state.nj.us or telephone at (609)984-0859. Please submit the completed form to: NJDEP, Dam Safety Section, PO Box 419, Trenton, NJ 08625.
Photo 1: Dam embankment crest from right abutment, looking left.
Note: No signs of movement.

Photo 2: Dam embankment crest from left abutment, looking upstream.
Note: No signs of movement.
Photo 3: Cracks repaired in concrete walkway on the crest of the dam.

Photo 4: Dam crest right of the spillway, looking right.
Photo 5: Crest of dam to the left of the primary spillway where the alignment of the embankment curves upstream along the reservoir.

Photo 6: Spall observed in concrete curb along concrete walkway.
Photo 7: Crack observed within the concrete walkway along the crest.

Photo 8: Upstream slope of dam embankment to the left of the primary spillway, looking upstream.
Photo 9: Upstream slope of the dam embankment to the right of the primary spillway, looking right.

Photo 10: Downstream slope of the embankment to the right of the primary spillway, looking right.
Photo 11: Downstream slope of the embankment to the right of the primary spillway.
 Note: Minor vegetation located at the toe of the dam embankment in the vicinity of the piezometers.

Photo 12: Downstream slope to the left of the spillway structure where the alignment curves upstream.
 Note: Concrete wall is exposed, no evidence of movement observed.
Photo 13: Downstream slope of embankment with minor vegetation.

Photo 14: Cracks observed on the concrete apron of the primary spillway.
Photo 15: Overview of the primary spillway/stilling basin from the right wing wall.
Note: Deteriorated divider removed.

Photo 16: Foreground - Discharge from right toe drain into the stilling basin.
Background - Discharge from artesian well into the stilling basin.
Photo 17: Left primary spillway wing wall and training wall.
Note: Training wall shows signs of deterioration. Cracks observed in left wing wall.

Photo 18: Right primary spillway wing wall and side wall with vertical cracks and efflorescence observed.
Note: Discharge from artesian well into the stilling basin.
Photo 19: Crack observed in right wing wall. Note: No signs of movement observed.

Photo 20: Close up of left wing wall. Note: Cracks and efflorescence observed.
Photo 21: Crack observed along the right stilling basin side wall.

Photo 22: Operator platform and concrete walkway.
Photo 23: Concrete walkway providing access to the intake for the water supply main electric actuator. Note: Repaired crack at the joint of the walkway.

Photo 24: Outlet operator for water supply main.
APPENDIX A

INSTRUMENTATION DATA
Doughty Pond Dam Vibrating Wire Piezometer Readings

<table>
<thead>
<tr>
<th>Date of Reading</th>
<th>Approx Reservoir Water Surface Elevation</th>
<th>Vibrating Wire Piezometer No.</th>
<th>Reading Date</th>
<th>Temperature, deg C</th>
<th>Serial No</th>
<th>Piezometer Depth</th>
<th>Cable Length</th>
<th>ABC Calibration Factors</th>
<th>Pressure, psi</th>
<th>Pressure, psi</th>
<th>Head, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P-1A</td>
<td></td>
<td>95511</td>
<td>4.5</td>
<td>20</td>
<td>-1.302209E-05</td>
<td>-1.633280E-02</td>
<td>1.460276E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P-1B</td>
<td></td>
<td>95508</td>
<td>11.5</td>
<td>30</td>
<td>-1.316032E-05</td>
<td>-4.233895E-03</td>
<td>1.231051E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P-1C</td>
<td></td>
<td>95513</td>
<td>21.5</td>
<td>40</td>
<td>-8.715080E-06</td>
<td>-1.451097E-02</td>
<td>1.097914E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>2</td>
<td></td>
<td>85773</td>
<td>23</td>
<td>20</td>
<td>-2.482909E-05</td>
<td>9.892460E-03</td>
<td>1.795000E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3T-A</td>
<td></td>
<td>95512</td>
<td>3</td>
<td>20</td>
<td>-1.679457E-05</td>
<td>-4.688293E-03</td>
<td>1.512926E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3T-B</td>
<td></td>
<td>95509</td>
<td>13</td>
<td>30</td>
<td>-1.295673E-05</td>
<td>-1.289672E-08</td>
<td>1.135791E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3T-C</td>
<td></td>
<td>95514</td>
<td>23</td>
<td>40</td>
<td>-9.117810E-06</td>
<td>-1.777438E-02</td>
<td>1.296400E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3W-A</td>
<td></td>
<td>95510</td>
<td>2</td>
<td>20</td>
<td>-1.083172E-05</td>
<td>-1.245563E-02</td>
<td>1.293832E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3W-B</td>
<td></td>
<td>95515</td>
<td>12</td>
<td>30</td>
<td>-1.212553E-05</td>
<td>-2.325246E-02</td>
<td>1.672338E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P3W-C</td>
<td></td>
<td>81545</td>
<td>22</td>
<td>40</td>
<td>-5.239990E-02</td>
<td>2.889900E-04</td>
<td>4.145800E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4T-A</td>
<td></td>
<td>81542</td>
<td>2</td>
<td>20</td>
<td>-1.573100E-05</td>
<td>3.748900E-03</td>
<td>1.387500E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4T-B</td>
<td></td>
<td>85711</td>
<td>12</td>
<td>30</td>
<td>-2.724700E-05</td>
<td>1.288300E-02</td>
<td>1.788400E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4T-C</td>
<td></td>
<td>85712</td>
<td>22</td>
<td>40</td>
<td>-2.881100E-05</td>
<td>3.095700E-02</td>
<td>2.238700E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4W-A</td>
<td></td>
<td>81527</td>
<td>7</td>
<td>20</td>
<td>-3.059500E-05</td>
<td>1.574700E-02</td>
<td>2.547200E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4W-B</td>
<td></td>
<td>81529</td>
<td>12</td>
<td>30</td>
<td>-5.067700E-05</td>
<td>2.576500E-04</td>
<td>4.072800E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>P4W-C</td>
<td></td>
<td>81544</td>
<td>22</td>
<td>40</td>
<td>-5.495800E-05</td>
<td>2.616400E-02</td>
<td>4.449700E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>PS-A</td>
<td></td>
<td>83875</td>
<td>9</td>
<td>20</td>
<td>-5.740200E-05</td>
<td>7.144300E-03</td>
<td>5.048200E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/02/18</td>
<td>11.75</td>
<td>PS-B</td>
<td></td>
<td>85728</td>
<td>23</td>
<td>30</td>
<td>-2.793800E-05</td>
<td>-1.748800E-03</td>
<td>2.349100E+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Readings obtained using Geokon Vibrating Wire Readout Box, Model GK-404.
2. A denotes upper location, B is middle, C is lower
3. Piezometer No. P4W was missing cap.
I. Emergency Notification

EMERGENCY NOTIFICATION FLOWCHART

EMERGENCY OBSERVED
Refer to Notification Information form (page 5)

CONTRACTOR
Refer to list of Contractors form (page 19)
Weeco Construction, Inc.
(609) 927-6661

OWNER/OPERATOR
Atlantic City Municipal Utilities Authority
Name: Bruce Ward
Phone: 609-345-3315
24 Hr: 609-641-0024
E-mail: bward@acmua.org

OWNER'S ENGINEER
Cherry, Weber & Associates
Phone: (732) 303-8700
Name: William F. Mercurio, PE
24 Hr: (732) 740-5453
bmercurio@cherryweber.com

MUNICIPAL OEMS
Town: Absecon City Name: James Eberwine
Phone: 609-641-0667 x 226
24 Hr: 609-839-6992
Police: 609-641-0667 x 0
534 james@comcast.net

COUNTY OEMS
County: Atlantic County
Name: Vincent Jones
Phone: 609-407-6742
24 Hr: 609-909-7200
Email: jones_vincent@aclink.org

NJ-OEM
STATE POLICE OEM
Phone: (609) 963-6900
24 Hr: 9-1-1

NJ-DSS
DAM SAFETY
Phone: (609) 984-0859
24 Hr (877) WARNDEP 927-6337

Date: August 2018